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OVERVIEW 
 

This technical note describes the performance of 
the ILX Lightwave LRS-9400-4638B coolerless 
butterfly laser diode fixture with a fiber temperature 
stabilized tray for laser modules which incorporate 
fiber Bragg gratings (FBGs).  The ILX Lightwave 
LRS-9400-4638B family of fixtures is designed for 
life testing of coolerless butterfly 980 nm pump 
laser diodes. These devices frequently incorporate 
a fiber Bragg grating for wavelength stabilization 
making them ideal for applications where 
wavelength stability is critical but temperature 
stability is difficult to guarantee. 
 

 
 

Figure 1: LRS-9400-4638B Fiber Temperature 
Stabilized Fixture 

 
Inherent in the architecture of this type of device 
are external fiber Fabry-Perot cavities formed by 
the rear facet and output facet of the laser and the 
fiber Bragg grating which is located approximately 
2 meters away through single mode fiber.  One 
issue with this architecture is the influence that 
temperature variations have on the optical and 
mechanical properties of the fiber cavity. Changes 
in fiber temperature of less than 0.5°C can cause 
changes in optical output power of as much as 3%,  

 
as measured at the back facet photodiode (PD).  
While this level of variation is not significant in 
typical end use applications, it complicates the 
interpretation of life-test and burn-in aging trend 
data where results are calculated based on small 
changes in optical output power over time. 
 
This technical note describes the effectiveness of 
a proprietary stabilization technique developed by 
ILX Lightwave to overcome this sensitivity to fiber 
temperature in long term life-tests, where 
measurement stability is of primary importance. 
 
BACKGROUND 
 

In order to characterize the effect described above, 
an experiment was conducted in which laser diode 
drive parameters were held constant and fiber 
temperature was varied. A fiber coupled 980nm 
Fabry-Perot laser with fiber Bragg grating and an 
external cavity length of 2m was loaded onto an 
ILX Lightwave LDM-4984 TEC controlled fixture. 
Laser drive current control, device temperature 
control, back facet photodiode (PD) current 
measurement, and fiber coil temperature 
measurement were performed with an LDC-3744B 
Laser Diode Controller.  Data was logged over 
GPIB with an external PC. The fiber coil of the 
device was taped to an optical breadboard with a 
10kΩ thermistor at the center of the coil. Fiber 
temperature was varied by heating the optical 
breadboard directly. 
 
Figure 2 shows normalized back facet PD current 
as a function of fiber temperature. The strong 
periodic behavior is due to the longitudinal 
translation of the peaks and nulls of the intracavity 
interference pattern [1, 2] that forms in the single 
mode fiber plus the effects of the thermal 
expansion and the temperature dependence of the 
index of refraction of the fiber, leading to path 
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length changes in the external cavities.  As can be 
seen in Figure 1, a temperature change of only 
0.15°C can lead to a change in optical output of 
more than 1%. 
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Figure 2: Normalized back facet PD current  

vs. fiber temperature. 
 
Lifetime of laser diodes is usually defined as the 
period of time it takes for the light output of the 
laser to degrade to a predetermined minimum 
acceptable level.  Often this level is defined as a 
20% decline in output  In aging tests devices are 
rarely tested to end of life conditions due to the 
long period of time that would be required to reach 
end of life under normal operating conditions. 
Rather they are operated under conditions which 
accelerate the aging, usually elevated temperature 
and/or drive current, for a fixed length of time. The 
aging trend data is then extrapolated to end of life 
using a linear regression. 
 
The optical output of semiconductor laser diodes 
often degrades at a rate of only few percent per 
thousand hours or less, even under accelerated 
conditions. Because of the use of extrapolation to 
estimate end of life and the slow aging of the 

devices, measurement noise must be reduced to a 
very low level. The effects of small changes in fiber 
temperature on the stability of the optical output of 
fiber coupled lasers with external FBGs can lead to 
changes of several percent, due for example to 
slight variations in ambient conditions. This 
increased noise leads to increased errors in 
estimated device lifetimes.  As a result, accurate 
lifetime estimation for this type of laser requires 
special control and measurement technology. 
 
One approach would be to carefully control the 
temperature of the external fiber during the test.  
However, as noted above, the change in optical 
output with fiber temperature can be as high as 
7%/°C.  To reduce the measurement noise due to 
the intracavity effect to less than ±0.1% would 
require temperature stability on the order of 
±0.01°C.  In practice, this level of stability is 
difficult to achieve over the period of a long-term 
test. 
 
ILX Lightwave has developed a proprietary control 
and measurement technology which provides 
significant reduction in the noise created by the 
intracavity effects inherent in fiber coupled lasers 
with external FBGs.  The effectiveness of this 
technique is presented in the following section. 
 
 
 

TEST RESULTS 
 

Aging tests were conducted on 96 fiber coupled 
980nm Fabry-Perot laser diodes with external 
FBGs. The devices were aged for approximately 
200 hours with the noise reduction control enabled 
and then another 200 hours with it disabled. Of the 
96 devices, 10 showed strong sensitivity to fiber 
temperature and data from these devices was 
used in this technical note. 
 
The lasers were aged at a constant case 
temperature of 65°C and constant forward bias 
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current of 900 mA.  The sampling and averaging 
intervals were 1 hour.  
 
A linear regression was performed on monitor 
photodiode current versus time, as is typical in 
lifetime analysis. The residual noise was then 
calculated as the deviation of each measurement 
data point from this linear fit. 
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Figure 3: Normalized back facet PD current with and 
without fiber temperature modulation enabled 

 
Figure 3 shows aging data from one of the ten 
devices tested. The first graph shows normalized 
back facet PD current versus time and its linear fit, 

with noise reduction control enabled. The second 
graph shows the same parameters from the same 
device with the noise reduction control disabled.  
 
In comparing the results in Figure 3 it can be easily 
seen that the noise reduction control substantially 
reduced the measurement noise during the test. 
For this particular device, the standard deviation of 
the residual noise improved from 0.08% to 0.02%.  
On average, the standard deviation of all ten 
devices improved from 0.14% to 0.04% as shown 
in Table 1. 

 

 Device Enabled Disabled Ratio 
D1 0.02% 0.08% 3.80 
D2 0.04% 0.06% 1.76 
D3 0.02% 0.06% 2.53 
D4 0.02% 0.06% 3.48 
D5 0.03% 0.12% 4.15 
D6 0.03% 0.11% 3.83 
D7 0.07% 0.28% 3.80 
D8 0.08% 0.36% 4.53 
D9 0.03% 0.08% 2.98 
D10 0.04% 0.16% 3.92 

 
Table 1: Standard deviation of residuals with fiber 

temperature modulation enabled and disabled 
 
 

CONCLUSION 
 

The proprietary control and measurement circuitry 
used on ILX Lightwave's LRS-9400-4638 Fiber 
Temperature Stabilized fixture for laser diodes with 
external fiber Bragg gratings provides a significant 
reduction in the noise in optical output associated 
with this type of laser.  The reduced measurement 
noise offered by this fixture allows more accurate 
life time estimation compared to conventional 
fixtures. 
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length changes in the external cavities.  As can be 
seen in Figure 1, a temperature change of only 
0.15°C can lead to a change in optical output of 
more than 1%. 
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Figure 2: Normalized back facet PD current  

vs. fiber temperature. 
 
Lifetime of laser diodes is usually defined as the 
period of time it takes for the light output of the 
laser to degrade to a predetermined minimum 
acceptable level.  Often this level is defined as a 
20% decline in output  In aging tests devices are 
rarely tested to end of life conditions due to the 
long period of time that would be required to reach 
end of life under normal operating conditions. 
Rather they are operated under conditions which 
accelerate the aging, usually elevated temperature 
and/or drive current, for a fixed length of time. The 
aging trend data is then extrapolated to end of life 
using a linear regression. 
 
The optical output of semiconductor laser diodes 
often degrades at a rate of only few percent per 
thousand hours or less, even under accelerated 
conditions. Because of the use of extrapolation to 
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temperature on the stability of the optical output of 
fiber coupled lasers with external FBGs can lead to 
changes of several percent, due for example to 
slight variations in ambient conditions. This 
increased noise leads to increased errors in 
estimated device lifetimes.  As a result, accurate 
lifetime estimation for this type of laser requires 
special control and measurement technology. 
 
One approach would be to carefully control the 
temperature of the external fiber during the test.  
However, as noted above, the change in optical 
output with fiber temperature can be as high as 
7%/°C.  To reduce the measurement noise due to 
the intracavity effect to less than ±0.1% would 
require temperature stability on the order of 
±0.01°C.  In practice, this level of stability is 
difficult to achieve over the period of a long-term 
test. 
 
ILX Lightwave has developed a proprietary control 
and measurement technology which provides 
significant reduction in the noise created by the 
intracavity effects inherent in fiber coupled lasers 
with external FBGs.  The effectiveness of this 
technique is presented in the following section. 
 
 
 

TEST RESULTS 
 

Aging tests were conducted on 96 fiber coupled 
980nm Fabry-Perot laser diodes with external 
FBGs. The devices were aged for approximately 
200 hours with the noise reduction control enabled 
and then another 200 hours with it disabled. Of the 
96 devices, 10 showed strong sensitivity to fiber 
temperature and data from these devices was 
used in this technical note. 
 
The lasers were aged at a constant case 
temperature of 65°C and constant forward bias 
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current of 900 mA.  The sampling and averaging 
intervals were 1 hour.  
 
A linear regression was performed on monitor 
photodiode current versus time, as is typical in 
lifetime analysis. The residual noise was then 
calculated as the deviation of each measurement 
data point from this linear fit. 
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Figure 3: Normalized back facet PD current with and 
without fiber temperature modulation enabled 

 
Figure 3 shows aging data from one of the ten 
devices tested. The first graph shows normalized 
back facet PD current versus time and its linear fit, 

with noise reduction control enabled. The second 
graph shows the same parameters from the same 
device with the noise reduction control disabled.  
 
In comparing the results in Figure 3 it can be easily 
seen that the noise reduction control substantially 
reduced the measurement noise during the test. 
For this particular device, the standard deviation of 
the residual noise improved from 0.08% to 0.02%.  
On average, the standard deviation of all ten 
devices improved from 0.14% to 0.04% as shown 
in Table 1. 

 

 Device Enabled Disabled Ratio 
D1 0.02% 0.08% 3.80 
D2 0.04% 0.06% 1.76 
D3 0.02% 0.06% 2.53 
D4 0.02% 0.06% 3.48 
D5 0.03% 0.12% 4.15 
D6 0.03% 0.11% 3.83 
D7 0.07% 0.28% 3.80 
D8 0.08% 0.36% 4.53 
D9 0.03% 0.08% 2.98 
D10 0.04% 0.16% 3.92 

 
Table 1: Standard deviation of residuals with fiber 

temperature modulation enabled and disabled 
 
 

CONCLUSION 
 

The proprietary control and measurement circuitry 
used on ILX Lightwave's LRS-9400-4638 Fiber 
Temperature Stabilized fixture for laser diodes with 
external fiber Bragg gratings provides a significant 
reduction in the noise in optical output associated 
with this type of laser.  The reduced measurement 
noise offered by this fixture allows more accurate 
life time estimation compared to conventional 
fixtures. 
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Inherent in the architecture of this type of device 
are external fiber Fabry-Perot cavities formed by 
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2 meters away through single mode fiber.  One 
issue with this architecture is the influence that 
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as measured at the back facet photodiode (PD).  
While this level of variation is not significant in 
typical end use applications, it complicates the 
interpretation of life-test and burn-in aging trend 
data where results are calculated based on small 
changes in optical output power over time. 
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a proprietary stabilization technique developed by 
ILX Lightwave to overcome this sensitivity to fiber 
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measurement stability is of primary importance. 
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In order to characterize the effect described above, 
an experiment was conducted in which laser diode 
drive parameters were held constant and fiber 
temperature was varied. A fiber coupled 980nm 
Fabry-Perot laser with fiber Bragg grating and an 
external cavity length of 2m was loaded onto an 
ILX Lightwave LDM-4984 TEC controlled fixture. 
Laser drive current control, device temperature 
control, back facet photodiode (PD) current 
measurement, and fiber coil temperature 
measurement were performed with an LDC-3744B 
Laser Diode Controller.  Data was logged over 
GPIB with an external PC. The fiber coil of the 
device was taped to an optical breadboard with a 
10kΩ thermistor at the center of the coil. Fiber 
temperature was varied by heating the optical 
breadboard directly. 
 
Figure 2 shows normalized back facet PD current 
as a function of fiber temperature. The strong 
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interference pattern [1, 2] that forms in the single 
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